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Motivation and Key Idea

• Diffusion models are mostly designed for static data
⋆ How can we design a diffusion model for temporal data?

• Many spatiotemporal forecasting methods are deterministic
⋆ How can we effectively use generative modeling for probabilistic forecasting problems?

• Autoregressive forecasting methods may produce unstable rollouts and poor long-range forecasts
⋆ How to close the gap between training and evaluation and perform efficient multi-step training?

Key idea: Replace the forward and reverse processes of standard diffusion models
with dynamics-informed interpolation and forecasting.

Our Results

• First study on diffusion models for spatiotemporal forecasting
• Novel adaptation of diffusion models to ensemble-based probabilistic forecasting
• Effective training approach for multi-step and long-range forecasting with low memory needs
• Competitive performance on probabilistic evaluations for forecasting complex dynamics in sea surface

temperatures, Navier-Stokes flows, and spring mesh systems
• Code: https://github.com/Rose-STL-Lab/dyffusion

DYffusion at inference time

Spatiotemporal Forecasting: given the the initial conditions x0 of a dynamical system, forecast a
sequence of h snapshots x1, x2, . . . , xh
DYffusion: iteratively refines the forecast of xh, similarly to how standard diffusion models are used to
sample from a distribution.

DYffusion vs. Standard Diffusion

Top: Standard Gaussian Diffusion, or the direct application of a video diffusion model to dynamics
forecasting for a horizon of h = 3.
Bottom: DYffusion, which operates in the observation space at all times and does not need to model
high-dimensional videos at each diffusion state.

Methods

Training

• Standard forward process → a stochastic temporal interpolation net, Iϕ

• Standard reverse process → a deterministic forecaster network, Fθ, that predicts h steps ahead
• Train networks in two stages with simple time-conditioned objectives
• In the second stage and during sampling, use a schedule that maps diffusion steps to interpolation
timesteps. In the simplest case [in]N−1

i=0 = {0, 1, . . . , h− 1}

Algorithm DYffusion, Two-stage Training

Input: networks Fθ, Iϕ, norm || · ||, horizon h, schedule [in]N−1
i=0

Stage 1: Train interpolator network, Iϕ
1. Sample i ∼ Uniform ({1, . . . , h− 1})
2. Sample xt, xt+i, xt+h ∼ X
3. Optimize minϕ ||Iϕ (xt, xt+h, i)− xt+i||2

Stage 2: Train forecaster network (diffusion model backbone), Fθ
1. Freeze Iϕ and enable inference stochasticity (e.g. dropout)
2. Sample n ∼ Uniform ({0, . . . , N − 1}) and xt, xt+h ∼ X
3. Optimize minθ ||Fθ(Iϕ (xt, xt+h, in) , in)− xt+h||2

Sampling

• DYffusion models the dynamics x(s) as follows, given initial conditions x(t) = xt:

x(s) = x(t) +
∫ s

t

dIϕ (xt, Fθ(x, s), s)
ds

ds for s ∈ (t, t + h].

• At inference time, we evaluate the integral using cold sampling [1].
Proposition 1. Cold Sampling is an approximation of the Euler method.
Proposition 2. In Cold Sampling, the discretization error per step is bounded by O(∆s). Naive
sampling does not have this property.

• Different discretizations are allowed: flexible sampling schedules at inference time

Algorithm Adapted Cold Sampling [1] for DYffusion

1: Input: Initial conditions x̂t := xt, schedule [in]N−1
i=0 , output timesteps J (by default

J = {1, . . . , h− 1})
2: for n = 0, 1, . . . , N − 1 do
3: x̂t+h← Fθ(x̂t+in, in)
4: x̂t+in+1 = Iϕ (xt, x̂t+h, in+1)− Iϕ (xt, x̂t+h, in) + x̂t+in
5: end for
6: x̂t+j ← Iϕ (xt, x̂t+h, j) , ∀j ∈ J # Optional refinement
7: Return: {x̂t+j | j ∈ J} ∪ {x̂t+h}

Experimental Setup

Dataset Spatial grid Training horizon Evaluation horizon
Sea surface temperature (SST; daily, tropical Pacific) 60× 60 7 7
Navier-Stokes with 4 obstacles [3] 221× 42 16 64
Spring-mesh [3] 10× 10 134 804

Baselines:
• Perturbation: Ensemble diffusion model backbone via input perturbations
• Dropout: Ensemble diffusion model backbone via enabling inference dropout
• MCVD and DDPM: Standard video [5] and denoising [2] diffusion models
Metrics (computed using a 50-member ensemble):
• Continuous ranked probability score (CRPS), lower is better
• Ensemble-mean MSE
• Spread-skill ratio (SSR) = ensemble standard deviation / RMSE. Measures reliability of the ensemble;

Closer to 1 is better

Experiments

Qualitative results. Navier-Stokes velocity norm fore-
casts by the best baseline for the dataset and DYffusion.
Our method (right column) can reproduce fine-scale details
visibly better than the baseline (see e.g. right sides of the
snapshots). Scan the QR code to view the full video.

Main benchmark results. Evaluation with 50-member ensembles for sea surface temperature forecasting
of 1 to 7 days ahead, and Navier-Stokes flow full trajectory forecasting of 64 timesteps. Numbers are
averaged out over the evaluation horizon. Bold indicates best, blue second best. Lower is better for CRPS
and MSE; Closer to 1 is better for SSR.

Method SST Navier-Stokes
CRPS MSE SSR Time [s] CRPS MSE SSR

Perturbation 0.281 ± 0.004 0.180 ± 0.011 0.411 ± 0.046 0.4241 0.090 ± 0.001 0.028 ± 0.000 0.448 ± 0.002

Dropout 0.267 ± 0.003 0.164 ± 0.004 0.406 ± 0.042 0.4241 0.078 ± 0.001 0.027 ± 0.001 0.715 ± 0.005

DDPM 0.246 ± 0.005 0.177 ± 0.005 0.674 ± 0.011 0.3054 0.180 ± 0.004 0.105 ± 0.010 0.573 ± 0.001

MCVD 0.216 0.161 0.926 79.167 0.154 ± 0.043 0.070 ± 0.033 0.524 ± 0.064

DYffusion 0.224 ± 0.001 0.173 ± 0.001 1.033 ± 0.005 4.6722 0.067 ± 0.003 0.022 ± 0.002 0.877 ± 0.006

Increasing the forecasted resolution. DYffusion can be used
for continuous-time forecasts and temporal super-resolution. Here,
we forecast the same Navier-Stokes trajectory shown in the figure
above but at 8× resolution. That is 512 timesteps instead of 64 are
forecasted in total. Scan the QR code to view the full video.

Ablations

• Requires fewer diffusion steps than standard diffusion models
• Using non-integer timesteps beyond the data resolution improves performance on SST dataset
• Sampling can be accelerated by skipping intermediate sampling states, similar to DDIM [4]
• The predictions of the forecaster net for xt+h iteratively improve with each sampling step in terms of

probabilistic scores (CRPS and SSR).
• Lower sample complexity than standard diffusion models
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