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Keyv Idea: Elucidated Rolling Diffusion (ERDM)

Motivation & Contributions We introduce ERDM, which successfully unifies a rolling forecast structure (applying increasing noise to farther lead times) with the principled, « ERDM consistently outperforms the key autoregressive EDM baseline by up to 10% in CRPS.
high-fidelity design of Elucidated Diffusion Models (EDM). « ERDM is competitive with external operational (IFS ENS) and hybrid physics-ML (Neural GCM ENS) models, especially at mid-to-long-range lead times.

- The Challenge: Probabilistic forecasting of chaotic dynamics requires explicitly modeling the progressive growth of uncertainty over time. — . ERDM is trained efficiently: 5 days on 4 H200 GPUs.
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