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Motivation & Contributions

• The Challenge: Probabilistic forecasting of chaotic dynamics requires explicitly modeling the progressive growth of uncertainty over time.
• The Gap: Current approaches struggle to balance high-fidelity temporal modeling with efficiency:

‹ Autoregressive models ignore complex temporal dependencies.
‹ Video diffusion is often data-inefficient and computationally prohibitive.
‹ Existing rolling diffusion frameworks [3] lack integration with the more modern, successful diffusion paradigm EDM [1].

• Our Solution – ERDM: We introduce Elucidated Rolling Diffusion Models, the first framework to unify rolling sequence modeling with
the performant design of EDM. By adapting the noise schedule, loss weighting, sampler, and spatiotemporal architecture to the rolling
setting, ERDM achieves strong performance on Navier-Stokes and ERA5 weather forecasting with gains of up to 50% and 10%, respectively.

Rolling EDM Noise Schedule

We adapt EDM’s noise schedule σptq to a windowed, progressive sched-
ule σ̄ptq “ pσ̄1ptq, . . . , σ̄W ptqq for t P r0, 1s. Each snapshot w in the
window has its own noise level σ̄wptq, with σ̄vptq ă σ̄wptq for v ă w
and σ̄w´1p0q “ σ̄wp1q. We find a log-convex schedule (ρ “ ´10) is
crucial for performance, outperforming the EDM default (ρ “ 7). Our
schedule assigns less noise to intermediate snapshots, providing more in-
formation for accurate joint denoising.

Training

Algorithm ERDM Training
Require: Training data Dtrain, network Fθ, σmin, σmax, ρ, Pmean, Pstd
repeat

Sample y “ py1, . . . , yW q P RW ˆD from Dtrain, ϵ „ N p0, IW ˆDq, t „ Upr0, 1qq
σ “ pσ1, . . . , σW q Ð σ̄ptq Ź Snapshot-dependent noise levels
x̄ Ð y ` σ ¨ ϵ Ź Add rolling noise to data
ŷ Ð cskippσqx̄ ` coutpσqFθpcinpσqx̄, cnoisepσqq Ź Vectorized preconditioning
Update θ using Lθ “ 1

W

řW
w“1 λpσwqfpσw; Pmean, Pstdq∥yw ´ ŷw∥2

2 Ź fp¨; Pmean, Pstdq is the pdf of LognormalpPmean, Pstdq
until Converged

Sampling

Probability flow ODE. For a noisy sequence x̄ :“ x̄1:W :
dx̄ “ ´diagpσ̄1ptq 9σ1ptqID, . . . , σ̄W ptq 9σW ptqIDq∇x̄ log ppx̄; σ̄ptqqdt,

Sampling: Initialization (l. 1-4), Denoising (l. 6-11), Rolling the window (l. 12-16)
Algorithm ERDM Deterministic Sampler (Euler-only)

1: Require: ŷ1:W , ∆t, Tforecast
2: tcur Ð 0; S Ð H Ź Initialize global diffusion time and empty generated sequence
3: sample x̄cur „ N pŷ1:W , σ̄ptcurq2IW ˆDq Ź Initialize window with snapshot-dependent rolling noise
4: while |S| ă Tforecast do Ź Predict snapshot |S|+1
5: σcur Ð σ̄ptcurq Ź Current noise levels
6: tnext Ð tcur ` ∆t Ź Global diffusion time after denoising
7: σnext Ð σ̄ptnextq Ź Noise levels at the end of this iteration
8: ŷ Ð Dθpx̄cur,σcurq Ź Denoise sequence
9: d Ð px̄cur ´ ŷq{σcur Ź Evaluate dx̄{dt at tcur

10: x̄next Ð x̄cur ` pσnext ´ σcurqd Ź Euler step from tcur to tnext
11: if tnext ě 1 then Ź Is the first snapshot “clean”?
12: add first snapshot of ŷ to S, discard it from the active window, x̄next, and append new noisy snapshot xnew „ N p0, σ2

maxI1ˆDq to it
13: tnext Ð tnext ´ 1 Ź Re-adjust global diffusion ‘time’ to be in r0, 1q

14: x̄cur Ð x̄next; tcur Ð tnext
15: return S

Key Idea: Elucidated Rolling Diffusion (ERDM)

We introduce ERDM, which successfully unifies a rolling forecast structure (applying increasing noise to farther lead times) with the principled,
high-fidelity design of Elucidated Diffusion Models (EDM).

Figure 1. ERDM sampling with a window, highlighted in bold purple, of size W “ 4. Top row: ERDM starts at diffusion time t “ 0 with
snapshots, x1, . . . ,xW , corrupted by progressively larger noise levels, σ̄1ptq ă ¨ ¨ ¨ ă σ̄W ptq “ σmax. Middle row: After N “ 2 joint denoising
steps, the sequence reaches lower noise levels at t “ 1 such that σ̄1p1q “ σmin and σ̄wp1q “ σ̄w´1p0q for w ą 1, as illustrated in the right-hand
panel. The now fully denoised first snapshot, x1, is returned. Bottom row: The rest of the sequence is shifted one slot to the right, and a
fresh pure-noise snapshot is appended to the new window. The cycle then repeats. Animation.

Results: 2D Navier-Stokes

• ERDM consistently outperforms all autoregressive EDM baselines (with W “ 1, 2, 4, 6), as well as DYffusion [4] and PDE-Refiner [2], in probabilistic skill.
• At long horizons (ą15 time steps), ERDM achieves an « 50% improvement in CRPS over the next-best baseline (EDM W “ 4).
• ERDM also produces far more calibrated ensembles (Spread-Skill Ratio closer to 1).

Key Ablations

ERDM’s performance relies on the synergy of its components. Removing any one is catastrophic:
• Noise Schedule: Using the EDM default (ρ “ 7) schedule makes CRPS 2x worse.
• Loss Weighting: Removing our loss weighting, fpσq, causes a >2x performance drop.
• Architecture: Using a 2D-only architecture (stacking time in channels) results in a 4x performance degradation.

Results: 1.5˝ ERA5 Weather Forecasting CRPS

• ERDM consistently outperforms the key autoregressive EDM baseline by up to 10% in CRPS.
• ERDM is competitive with external operational (IFS ENS) and hybrid physics-ML (NeuralGCM ENS) models, especially at mid-to-long-range lead times.
• ERDM is trained efficiently: 5 days on 4 H200 GPUs.

Figure 2. Score card of ERDM’s CRPS relative to next-step autoregressive EDM baseline (in %; lower is better) for up to 15-day ahead forecasts. ERDM consistently outperforms the
EDM baseline, especially for geopotential and high-altitude levels.
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Results: Physical Realism (ERA5)

• Many ML models produce blurry forecasts that lack
physical realism.

• ERDM produces physically consistent power spec-
tra, matching the operational, physics-based
IFS ENS model and outperforming other ML-
based models like NeuralGCM.

Fig. 3: Normalized spectral density of 14-day fore-
casts, averaged over high latitudes, r60˝, 90˝s. Spectra
are divided by the target ERA5 reanalysis spectra.
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